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Why Seismic Rehabilitation?

• Earthquake is a real
threat

• Save lives
• Reduce the risk of

catastrophic failure
• Minimize economic

impact
• Minimize the cost of

repair
• Minimize the risk of

service interruption



Systematic Rehabilitation
Performance-based Analysis
• Reasonable Design/Evaluation

Earthquake Motions
• Appropriate Method of Analysis
• Probable Load Combinations
• Material Properties and

Damping consistent with
existing conditions

• Structural models that account
for existing conditions and
method of construction

• Performance evaluation in
terms of demand-capacity
ratios, strength and
displacement capacities

Performance-based Design
• Serviceability Performance

Serviceable and operable
immediately following an OBE
event (elastic or/ nearly elastic)

• Damage Control Performance
Limited nonlinear behavior can
occur under MDE, if nonlinear
displacement demands are low
and load resistance is not
diminished

• Collapse Prevention Performance
Collapse of the structure should
be prevented regardless of level
of damage
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Nonlinear Behavior and
Modes of Failure of Arch Dams

• Contraction joints may open and
close repeatedly during ground
shaking

• Contraction joint opening releases
arch tensile stresses and transfers
forces to cantilevers

• The increase cantilever stresses
may exceed tensile strength of lift
lines causing horizontal cracks

• Potentially opened contraction
joints and cracked lift lines may
subdivide the monolithic arch into
one or several partially free
cantilever blocks



Nonlinear Behavior and
Modes of Failure of Arch Dams

• Any failure of the arch dam more likely would involve sliding stability of partially
free cantilever blocks

• For small and moderate joint openings, the partially free blocks may remain
stable through interlocking (wedging) with adjacent block

• The extent of interlocking depends on the depth and type of shear keys
• The magnitude of compressive stresses, extent of joint opening or cracking, and

amplitude of non-recoverable block movements will control the overall stability of
the dam, rather than the magnitude of calculated tensile stresses



Dam-Foundation FE Model

• Dam:
Shell/Solid Elements

• Foundation:
Massless model:
– Accounts for flexibility only
– Fixed boundaries

Viscoelastic Half-space:
– Assumes homogenous rock

and infinitely long canyon
– Accounts for inertia, damping

and flexibility
– Treated as 2D boundary

problem
– Leads to impedance matrix

at the interface



Dam-Water Interaction Model
• Generalized Westergaard

Added Mass
• FE solution of wave equation

for incompressible water
• FE solution of wave equation

for compressible water with
absorptive boundaries

FINITE-ELEMENT
REGION

INFINITE
UNIFORM CHANNEL

DAM-WATER
INTERFACE

INFINITY



Earthquake ground Motion
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Earthquake Records Name Scale

Pacoima Dam, downstream record
1971 San Fernando earthquake
Mw 6.6, R = 2.8 km

Pacx 0.52

Spectrum-matched
1971 Pacoima Dam record Pacb 1.00

Pacoima Dam, downstream record
1994 Northridge earthquake
Mw 6.7, R = 8 km

Pacn 1.13

Newhall, West Pico Canyon Boulevard
1994 Northridge earthquake
Mw 6.7, R = 7.1 km

U56 1.80

Coyote Lake Dam
1984 Morgan Hill earthquake
Mw 6.2, R = 0.1 km

Cld 0.64

Gilroy Array No. 1
1989 Loma Prieta earthquake,
Mw 6.9, R = 11 km

Gly 0.81



Input Acceleration Time Histories
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Time Histories of Crest Displacement
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Envelope of Maximum Stresses (Gilroy)



Concurrent Stresses at the Time of
Maximum Arch Stress



Time History of maximum Arch Stresses
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Damage Criteria for Linear Analysis
(Acceptable Performance for Arch Dams)
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Damage Criteria for Arch Dams
(Acceptable Performance)
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Nonlinear Behavior and
Modes of Failure of Gravity Dams

• Formation, location, extent, and
orientation of tensile cracking are
sensitive to characteristics of the
earthquake ground motion

• Cracking always initiates at the
base of the dam

• Cracks at the top generally initiate
from the D/S face and are
horizontal or sloping downward

• A crack sloping down from the D/S
is more stable against sliding than
a crack with a upward slope

• Any failure would likely involve
sliding along the cracked surfaces



Sub-structure FE Model of
Gravity Dam

• Complete system is divided
into 3 substructures - - dam,
water, and foundation rock

• Dam is modeled using
standard FE method

• Water is idealized as a
continuum leading to
frequency-dependent
hydrodynamic forces

• Foundation region is
idealized as continuum
resulting in dynamic stiffness
(impedance) matrix

VISCO-ELASTIC HALF-PLANE

a

WATER

SEDIMENT

ax

y



Standard FE Model of
Gravity Dam

• Complete system of dam,
water, and foundation is
idealized and analyzed as
a single composite model

• Dam is modeled using
standard FE method

• Water is represented by
Westergaard added mass

• Foundation region is
represented by a FE mesh
accounting for flexibility
only

FOUNDATION

a

a x

y

ADDED-MASS
OF WATER



Damage Criteria for Linear Analysis
(Acceptable Performance for Gravity Dams)

• D/C<1, linear elastic
response

• Damage Acceptable if

- D/C <2
- Duration below the curve
- Overstressed region<15%
of dam surface area

• Otherwise
May require nonlinear
analysis or retrofit
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Modes of Failure of Freestanding Towers

• Different combinations
and sequence of failures
(a), (b), (c), and (d) are
also possible

• Flexure is desired mode
of nonlinear behavior
offering energy dissipation
through inelastic
deformation

• Shear failure should be
avoided due to small
energy dissipation and
rapid strength degradation
(non-ductile)



Example Intake Tower



Input Acceleration Time Histories
(Mw 6.5 at 5 km)
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Maximum Response of Example Tower
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1 1966 Parkfield 1.95 1,351,870 13,149

2 1987 Whittier Narrows 2.14 1,453,510 15,296

3 1989 Loma Prieta 4.80 3,376,720 33,308

4 1971 San Fernando 4.28 2,779,910 28,977

Y-Component of Earthqauke Ground Motion (Y-Direction)

1 1966 Parkfield 3.05 1,518,030 24,293

2 1987 Whittier Narrows 2.49 1,014,640 14,410

3 1989 Loma Prieta 4.56 2,224,440 25,426

4 1971 San Fernando 5.94 2,394,360 21,734



Damage Criteria for Linear Analysis of
Intake Towers
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Damage Assessment with 5% damping

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 1.5 2 2.5 3 3.5 4
DCR in Longitudinal Direction (My/Myu)

Cu
m
ul
at

iv
e 

In
el
as

ti
c 

D
ur

at
io
n 

(S
ec

)

Cholame #8, 1966 Parkfield
Garvey Res., 1987 Whittier Narrows
Gavilan College, 1989 Loma Prieta
Pacoima Dam, 1971 San Fernando

0

0.1

0.2

0.3

0.4

0.5

0.6

1 1.5 2 2.5 3 3.5 4
DCR in Longitudinal Direction (My/Myu)

Yi
el
d 

H
ei
gh

t 
Ra

ti
o

Cholame #8, 1966 Parkfield
Garvey Res., 1987 Whittier Narrows
Gavilan College, 1989 Loma Prieta
Pacoima Dam, 1971 San Fernando

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 1.5 2 2.5 3 3.5 4
DCR in Transverse Direction (Mx/Mxu)

Cu
m
ul
at

iv
e 

In
el
as

ti
c 

D
ur

at
io
n 

(S
ec

)

Cholame #8, 1966 Parkfield
Garvey Res., 1987 Whittier Narrows
Gavilan College, 1989 Loma Prieta
Pacoima Dam, 1971 San Fernando

0

0.1

0.2

0.3

0.4

0.5

0.6

1 1.5 2 2.5 3 3.5 4
DCR in Transverse Direction (Mx/Mxu)

Yi
el
d 

H
ei
gh

t 
Ra

ti
o

Cholame #8, 1966 Parkfield
Garvey Res., 1987 Whittier Narrows
Gavilan College, 1989 Loma Prieta
Pacoima Dam, 1971 San Fernando



Damage Assessment with 10% Damping
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Dynamic Soil-Pile-Structure
Interaction Analysis of Olmsted Lock

• MDE spectra and ground
motion time histories

• Idealization of site soil
profiles and estimates of
dynamic soil properties

• Development of finite
element models of the soil-
pile-lock structure system

• Analysis of static loading
• Analysis of dynamic loading
• Results and performance

evaluation



Design Earthquake Motion
and Load Combination Cases

Equal-hazard Spectra (x=5%), 1000-year Return Period
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Earthquake Ground Motion
Acceleration Time Histories



Stratigraphic Profile at Olmsted Site



Soil-Pile-Structure Interaction Analysis



Snap Shot of Maximum Deflection of
Lock-Pile-Foundation



Evaluation of Lock Section Forces



Evaluation of Lock Section Forces



Evaluation of Pile Forces and Moments



Evaluation of Pile Forces and Moments



Performance Criteria for Lock H-Piles
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•  DCR of concrete sections should not exceed 1.5 and those exceeding
  one be limited to less than 10% surface area of the lock.



Pushover Analysis of Intake Towers
with RC Fiber Element

Stick Model3D View of Example Tower



Tower Section Properties and Re-bar
Arrangement

Width (b) 37.00 ft
Depth (h) 48.00 ft
Cross Section Area (A) 876.00 ft2

Moment of Inertia (Iyy) 243,792 ft4

Nominal Moment (Mny) 718,814 k-ft
Cracking Moment (Mcr) 620,900 k-ft

Width (b) 48.00 ft
Depth (h) 37.00 ft
Cross Section Area (A) 876.00 ft2

Moment of Inertia (Ixx) 155,737 ft4

Nominal Moment (Mnx) 518,879 k-ft
Cracking Moment (Mcr) 507,900 k-ft

Parameter

Pushing in Transverse Direction

Value

Parameter

Pushing in Longitudinal Direction

Value



Nonlinear RC Fiber Element

• RC Fiber Element
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Moment-curvature Relationships for
Example Intake Tower (x-dir)
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Pushover Curves for Example
 Intake Tower (x-dir)
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Moment-curvature Relationships for
Example Intake Tower (y-dir)
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Pushover Curves for Example
 Intake Tower (y-dir)
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Pushover Analysis of Navigation Locks



Nonlinear FE Model for Pushover
Analysis of Navigation Locks

• Lumped Model

Pile foundation
represented by
lumped springs

• Full Model

Pile foundation
represented by
nonlinear beam-
column and soil
springs (p-y
curves)



Nonlinear Pile Foundation Models

• Nonlinear Lumped Pile-Head
Springs

• Nonlinear Pile-Soil Model



Nonlinear Pile-head Stiffness
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Nonlinear Fiber Element

• RC Fiber Element
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Pushover Deflected Shapes for
Pile-Founded Lock

Lumped Model

Full Model



Moment-Curvature relationship for
Lock Base Slab

Section: Base-1
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Pushover Curve for Pile-Founded Lock
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Nonlinear Analysis of Arch Dams
with Joint Opening

Parameters of Greatest Significance

• Input Earthquake Acceleration
Histories

• Joint Strength and Stiffness
Properties

• Frictional Resistance of Joints
• Number of Joints
• Location of Joints



Results and Performance Evaluation

• Envelope of Arch & Cantilever
Stress Contours

• Instantaneous Arch & Cantilever
Stress Contours

• Extend/History of Contraction
Joint Opening/Sliding

• Extent/History of Lift Joint
Cracking/Opening/Sliding

• Understanding of Dam Behavior
& Potential Failure Modes, if
Severe Joint Opening/Cracking



Envelope of Maximum Stresses
(monolithic dam)



Concurrent Maximum Stresses
(joints permitted to open)
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Historic Performance of Dams

• Shih-Kang Gravity Dam:

Incident:

The Chi-Chi, Taiwan
Earthquake of Sep.
21, 1999

Fault rupture was most dramatic at Shih-Kang Dam. It passed directly beneath
the right end of the dam and caused severe damage. The offsets were roughly
10m vertical and 2 m horizontal. Prior to this earthquake, the Chelungpu fault
was not mapped at this site.



Typical Seismic Deficiencies and
Corrective Measures

• Bartlett Multiple Arch Dam:
287’ high (Phoenix, CA)

– Deficiency: The upper portions
of arches would be
overstressed under an MCE
event and might fail

• Clear Creek Dam: 83’ high
thin arch dam (Yakima, WA)

– Deficiency: Unstable under
MCE

– Modification: Was converted
from a thin arch to a gravity
dam by constructing a mass
concrete buttress on the
downstream side



Typical Seismic Deficiencies and
Corrective Measures

• Bear Valley Multiple Arch
Dam: 80’ high, w/ 10 arches
(Redlands, CA)

Deficiency:
– Did not meet seismic safety

requirements

Modification:
– Existing arch barrels were

filled by mass concrete to
strengthen the dam and
thus improve its earthquake
resistance



Typical Seismic Deficiencies and
Corrective Measures

• Gibraltar Dam: 195’-high
arch dam (Santa Barbara,
CA)

Deficiency:
– Did not meet seismic safety

requirements

Modification:
– Roller-compacted concrete

buttress was constructed
against downstream slope of
the dam to improve its
earthquake resistance



Typical Seismic Deficiencies and
Corrective Measures

• Mathis Dam: 108’-high
buttress dam (Tallulah Falls,
GA)

Deficiency:
– Potential sliding failure under

PMF

Modification:
– Concrete thrust blocks and

tendon anchors were added to
improve stability

• Shepaug Dam: 140’-high
Concrete Gravity (Southbury &
Newton, Connecticut)

Deficiency:
– Unstable under new PMF

Modification:
– Approximately 100 post-

tensioned anchors installed in
the dam to improve stability



Typical Seismic Deficiencies and
Corrective Measures

• Stewart Mountain Dam: 212’-
high thin arch (Phoenix, AZ)

Deficiencies:
– Upper portion of the arch could

fail due to lack of bond across
lift lines

– Gravity sections and thrust
blocks were determined to be
unstable

Modification:
– Post-tensioned anchors were

installed in the arch and thrust
block



Typical Seismic Deficiencies and
Corrective Measures

• Pacoima Dam: 372’-high arch
dam (San Fernando, CA)

Incident (1971 & 1994 Eqs):
– Permanent slight tilting of dam crest

and chord shortening of dam
– Partial opening of contraction joints

within the dam and between the
dam and thrust block

– Crack in left thrust block
– Rearrangement and movement of

rock mass

Modifications:
– Abutment stabilization by post-

tensioned rock anchors;
foundation curtain grouting,
relief drains, thrust block crack
repair and joint grouting


